Introduction to Mobile
Security Testing

Approaches and Examples using OWASP MSTG

OWASP German Day 20.11.2018

Carlos Holguera

S whoami

Carlos Holguera [ol yera]

= Security Engineer working at ESCRYPT GmbH
since 2012

" Area of expertise:
— Mobile & Automotive Security Testing
— Security Testing Automation

@grepharder

Index

Why?

From the Standard to the Guide
Vulnerability Analysis
Information Gathering
Penetration Testing

Final Demos

N OO P W DN -

1 Why?

Why?

= Trustworthy sources?

= Right Methodology?

= Latest Techniques?

$

v MASVS
v MSTG

isthe WHAT
isthe HOW

Online videos,
articles,
trainings ??

https://github.com/OWASP/owasp-mstg/tree/master/Checklists

2 From the Standard
to the Guide

From the Standard to the Guide

ONE IIOES NIIT‘SIMI’» ‘

' _ | ¢.

SEGIIIII'I'Y 'I'EST

From the Standard to the Guide

OWASP Mobile Application Security Verification Standard

This is the official Github Repository of the OWASP Mobile Application Security Verification
Standard (MASVS). The MASVS establishes baseline security requirements for mobile apps @owAsP | standard

that are useful in many scenarios, including: .
Mobile AppSec
Verification

¢ In the SDLC - to establish security requirements to be followed by solution architects
and developers;

n1.1

s In mobile app penetration tests - to ensure completeness and consistency in mobile app
penetration tests;

* In procurement - as a measuring stick for mobile app security, e.g. in form of
questionnaire for vendors;

s [t cetera.

The MASVS is a sister project of the OWASP Mobile Security Testing Guide.

Getting the MASVS

PDF downloads are available on the Releases page. The current release is MASVS version 1.1. The MASVS is also available in

different languages: \

* Spanish

* Russian \)\Q)

Open on GitHub Read it on GitBook 2%

https://github.com/OWASP/owasp-masvs
https://mobile-security.gitbook.io/masvs/
https://github.com/OWASP/owasp-masvs
https://github.com/OWASP/owasp-mstg/tree/master/Checklists

From the Standard to the Guide

OWASP Mobile Application Security Verification Standard

Foreword

Frontispiece

Using the MASVS
Assessment and Certification

V1: Architecture, Design and
Threat Modeling Requirements

V2: Data Storage and Privacy
Requirements

V3: Cryptography Requirements

V4: Authentication and Session
Management Requirements

V5: Network Communication
Requirements

V6: Platform Interaction
Requirements

V7: Code Quality and Build Setting
Requirements

V8: Resilience Requirements

/ OS agnostic

Security Verification Requirements

#

5.1

5.2

5.3

5.4

5.5

5.6

Description L1

Data is encrypted on the network using TLS. The secure channel is used consistently
throughout the app.

The TLS settings are in line with current best practices, or as close as possible if the
mobile operating system does not support the recommended standards.

The app verifies the X.509 certificate of the remote endpoint when the secure channel is
established. Only certificates signed by a trusted CA are accepted.

The app either uses its own certificate store, or pins the endpoint certificate or public
key, and subsequently does not establish connections with endpoints that offer a
different certificate or key, even if signed by a trusted CA.

The app doesn't rely on a single insecure communication channel (email or SMS) for
critical operations, such as enrollments and account recovery.

The app only depends on up-to-date connectivity and security libraries.

L2

\’ How? MSTG

https://mobile-security.gitbook.io/masvs/0x10-v5-network_communication_requirements
https://github.com/OWASP/owasp-mstg/tree/master/Checklists
https://github.com/OWASP/owasp-mstg/tree/master/Checklists

From the Standard to the Guide

OWASP Mobile Application Security Verification Standard

A

B | C

Mobile Application Security Requirements - Android

Detailed Verification Requirement
Architecture, design and threat modelling
Verify all application components are identified and are known to be needed.

Verify that security controls are never enforced only on the client side, but on the respective remote endpoints.

Verify that a high-level architecture for the mobile app and all connected remote services has been defined and security has been
addressed in that architecture.

Verify that data considered sensitive in the context of the mobile app is clearly identified.

Verify all app components are defined in terms of the business functions and/or security functions they provide.

Verify that a threat model for the mobile app and the associated remote services, which identifies potential threats and
countermeasures, has been produced.

Verify that all security controls have a centralized implementation.

Verify that there is an explicit policy for how cryptographic keys (if any) are managed, and the lifecycle of cryptographic keys is
enfarced. Ideally, follow a key management standard such as NIST SP 800-57.

Verify that a mechanism for enforcing updates of the mobile app exists.

Verify that security is addressed within all parts of the software development lifecycle.

Data Storage and Privacy

Verify that system credential storage facilities are used appropriately to store sensitive data, such as user credentials or
cryptographic keys.

Verify that no sensitive data is written to application logs.

Verify that no sensitive data is shared with third parties unless it is a necessary part of the architecture.

Verify that the keyboard cache is disabled on text inputs that process sensitive data.

Verify that the clipboard is deactivated on text fields that may contain sensitive data.

Verify that no sensitive data is exposed via IPC mechanisms.

Verify that no sensitive data, such as passwords or pins, is exposed through the user interface.
Verify that no sensitive data is included in backups generated by the mobile operating system.
Verify that the app removes sensitive data from views when backgrounded.

Verify that the app does not hold sensitive data in memory longer than necessary, and memory is cleared explicitly after use.
Verify that the app enforces a minimum device-access-security policy, such as requiring the user to set a device passcode.

Get from GitHub

Status

Pass

N/A
N/A
N/A
N/A

N/A
N/A

N/A
N/A

N/A

Testing Procedure

Testing For Sensitive Data in Local Data Storage
Testing For Sensitive Data in Logs
Testing Whether Sensitive Data Is Sent To Third Parti

Testing Whether the Keyboard Cache Is Disabled for
Testing for Sensitive Data in the Clipboard

Testing Whether Sensitive Data Is Exposed via IPC M¢
Testing for Sensitive Data Disclosure Through the Use

Testing for Sensitive Data in Backups
Testing for Sensitive Information in Auto-Generated ¢

Testing for Sensitive Data in Memory
Polic

Testing the Device-Access-Securi

fork & customize
dep. on target

https://github.com/OWASP/owasp-mstg/tree/master/Checklists
https://github.com/OWASP/owasp-mstg/tree/master/Checklists
https://github.com/OWASP/owasp-mstg/tree/master/Checklists

From the Standard to the Guide

OWASP Mobile Security Testing Guide

Introduction
Changelog

Frontispiece

Introduction to the Mobile Security
Testing Guide

Mobile App Taxonomy

Mobile App Security Testing

Mobile App Authentication
Architectures

Testing Network Communication
Cryptography in Mobile Apps
Testing Code Quality

Tampering and Reverse Engineering

Testing User Education

Platform Overview

Setting up a Testing Environment for

We do have a message to our readers however! The first rule of the OWASP Mobile Security Testing Guide
is: Don't just follow the OWASP Mobile Security Testing Guide. True excellence at mobile application
security requires a deep understanding of mobile operating systems, coding, network security,
cryptography, and a whole lot of other things, many of which we can only touch on briefly in this book.
Don't stop at security testing. Write your own apps, compile your own kernels, dissect mobile malware,
learn how things tick. And as you keep learning new things, consider contributing to the MSTG yourself!
Or, as they say: “Do a pull request".

MSTG

MOBILE
SECURITY
TESTING
GUIDE

https://mobile-security.gitbook.io/mobile-security-testing-guide/
https://github.com/OWASP/owasp-mstg
https://github.com/OWASP/owasp-mstg/tree/master/Checklists
https://github.com/OWASP/owasp-mstg/tree/master/Checklists

From the Standard to the Guide

OWASP Mobile Security Testing Guide

lore Marketplace Pricing keychain Sign in o Sign up

22 code results in OWASP/owasp-mstq or view all results on GitHub Sort: Best match v

Document/0x06b-Basic-Security-Testing.md Markdown
Showing the top two matches Last indexed 20 days ago

% scp -P 2222 root@localhost:/tmp/data.tgz .

Dumping KeyChain Data

[Keychain-dumper](https://github.com/ptoomey3/Keychain-Dumper/) lets you dump a jailbroken

Android Network APIS device's KeyChain contents. The easiest way to get the tool is to download the binary from its

GitHub repo:
References

OWASP Mobile Top 10 2016 Document/0x06e-Testing-Cryptography.md Markdaown
Showing the top two matches Last indexed 20 days ago

« M3 - Insecure Communication - https://ww . . .
o Next, for asymmetric operations, Apple provides [SecKey](https://opensource.apple.com/source/Secur
Insecure_Communication c " " . . . L. .
57748.51.3/keychain/SecKey.h.auto.html "SecKey"). Apple provides a nice guide in its [Developer Doc

(https://developer.apple.com/documentation/security/certificate_key_and_trust_services/keys/using k

OWASP MASVS "Using keys for encryption”) on how to use this.
« V5.3: "The app verifies the X.509 certificats *Source: https://stackoverflow.com/questions/8560555/pbkdf2-using-commoncrypto-on-ios, tested in
established. Only certificates signed by a t the “Arcane” Library*

« V5.4:"The app either uses its own certifica
subsequently does not establish connectic When you need to store the key, it is recommended to use the Keychain as long as the protection cl

even if signed by a trusted CA."
= V5.6: "The app only depends on up-to-date connectivity and security libraries."

https://github.com/OWASP/owasp-mstg/tree/master/Checklists
https://github.com/OWASP/owasp-mstg/tree/master/Checklists

3 Vulnerability Analysis

Vulnerability Analysis

Static Analysis (SAST)

Manual Code Review

» grep &line-by-line examination
= expert code reviewer proficient in both
language and frameworks

Automatic Code Analysis

= Speed up the review

= Predefined set of rules orindustry best
practices

= False positives! A security professional
must always review the results.

= False negatives! Even worse ...

Dynamic Analysis (DAST)

Testing and evaluation of apps

= Real-time execution
= Manual
= Automatic

Examples of checks

= disclosure of data in transit
= authentication and authorizationissues
= server configuration errors.

Recommendation: SAST + DAST + security
professional

Vulnerability Analysis

Static Analysis

/ Based on MASVS

Check the app’s source code for logging mechanisms by searching for the following keywords:

e Functions and classes, such as:

© android.util.Log
© Log.d | Log.e | Log.i | Log.v | Log.w |
2 Logger

« Keywords and system output:

© System.out.print | System.err.print
o logfile

o logging

o logs

While preparing the production release, you can use tools
delete logging-related code. To determine whether all the
have been removed, check the ProGuard configuration file

-assumenos ideeffects class android.util.log

“OWASP, MobileSecurity Testing Guide, 2018 (-

Dynamic Analysis

Use all the mobile app functions at least once, then identify the application's data directory and look for
log files (/data/data/<package-name>). Check the application logs to determine whether log data has
been generated; some mobile applications create and store their own logs in the data directory.

Many application developers still use system.out.println or printstackTrace instead of a proper

logging class. Therefore, your testing strategy must include all output generated while the application is

starting, running and closing. To determine what data is directly printed by sSystem.out.println oOr
printstackTrace , you can use Logcat . There are two ways to execute Logcat:

« Logcat is part of Dalvik Debug Monitor Server (DDMS) and Android Studio. If the app 1s running in
debug mode, the log output will be shown in the Android Monitor on the Logcat tab. You can filter the
app's log output by defining patterns in Logcat.

Android Monitor
[Xiaomi Redmi Note 2 Android 5.0.2 (API 21) B sg.vp.owasp_mobile.myfirstbrokenapp (3621) B

B9 | s togear | g Memory -+ R CPU -+ [l GPU | g Network +| Verbose [(}

o 86-18 13:27:27.542 3821-3888/s9.vp.owasp_mobile.myfirstbrokenapp D/OpenGLRenderer: Flushing caches (mode @)

86-10 13:27:27.542 3821-3888/59.vp.owasp_mobile.myfirstbrokenapp D/OpenGLRenderer: endAllStagingAnimators on @xab7bc288 (RippleDraw
86-10 13:27:27.543 3821-3888/59.vp.owasp_mobile.myfirstbrokenapp D/GraphicBuffer: unregister, handle(@xab7aebbB) (w:1888 h:1929 s:!
96-10 13: .545 3821-3888/sg.vp.owasp_mobile.myfirstbrokenapp D/IMGSRV: gralloc_unregister_buffer:1583: ID=2138 ref=0

.545 3821-3888/59.vp.owasp_mobile.myfirstbrokenapp D/GraphicBuffer: unregister, handle{@xab7d9568) (w:188@ h:192@ s:!
86-10@ 13:27:27.545 3821-3888/59.vp.owasp_mobile.myfirstbrokenapp D/IMGSRV: gralloc_unregister_buffer:1563: ID=2140 ref=9

86-10 13:27:27.546 3821-3888/50.vp.owasp_mobile.myfirstbrokenapp D/GraphicBuffer: unregister, handle{@xab7aff8®) (w:108@ h:1928 s:!

~\
J Regex Show only selected application

« =+ 0D

\ What to verify & how.

Incl. References to
MASVS Requirements

https://mobile-security.gitbook.io/mobile-security-testing-guide/android-testing-guide/0x05d-testing-data-storage
https://github.com/OWASP/owasp-mstg/tree/master/Checklists
https://github.com/OWASP/owasp-mstg/tree/master/Checklists

Vulnerability Analysis

Demo App

The MSTG Hacking
Playground App

¥ "% @ 11:20

Attack me if u can

OMTG-DATAST-001-BADENRYPTION
OMTG-DATAST-001-KEYCHAIN
OMTG-DATAST-001-KEYSTORE

OMTG_DATAST_001_INTERNALSTORAGE
OMTG_DATAST_001_EXTERNALSTORAGE
OMTG-DATAST-001-SHARED PREFERENCES
OMTG_DATAST_001_SQLITE
OMTG_DATAST_001_SQLITE-ENCRYPTED
OMTG_DATAST_002_LOGGING
OMTG_DATAST_004_3RD_PARTY

OMTG_DATAST_005_KEYBOARD_CACHE

OMTG_DATAST_006_CLIPBOARD @

https://github.com/OWASP/MSTG-Hacking-Playground

Vulnerability Analysis

Manual Code Review

Example: Android original source code

[/ Using Java-AES-Crypto, https://github.com/tozny/java-aes-crypto
public void decryptString() {

J// BTW: Really bad idea, as this is the raw private key. Should be stored in the keystore
String rawkeys = "4zInk+d4j10Q3mlBlELctxg==:4altzwpbniebvM7yC4/Gla2imlpSzqrAFtVK91Rm+Q4="";
AesCbhbclithIntegrity.Secretkeys privateKey = null;
try {
privatekey = AesCbclithIntegrity.keys(
} catch (InvalidKeyException e) {
e.printStackTrace();

String cipherTextString = "6WpfikgkMIsPhHNRWoSpVg==:6/TgUCXrAula21UMPWhxERHOWFWEHFp3VIsz3Ws37 U= COmbyNQjcfbn7eB5Fz

AesChbclWithIntegrity.CipherTextIvMac cipherTextIvMac = new AesCbcWithIntegrity.CipherTextIvMac({cipherTextString);
try {

plainText = AesChbclithIntegrity.decryptString(cipherTextIvMac, privatekey);
} catch (UnsupportedEncodingException e) {

e.printStackTrace();

3l
32
a3

35
36
37
38
39
40
41

GEON

46
47

Vulnerability Analysis

Manual Code Review

Example: Android decompiled source code

4
public void decryptString() {
String string2 = "4zInk+d4j103mlBlELctxg==:4aZtzwpbniebvM7yC4/GIla2ZmlpSzqrAFtVk91Rm+Q4=";
AesCbcWithIntegrity$SecretKeys aesCbcWithIntegritys$SecretKeys = null;

try {
aesCbcWithIntegrity$Secyetkeys = AesCbcWithIntegrity.keys({string2);

catch (InvalidKeyException ipvalidKeyException) {
invalidKeyException.prin{StackTrace();

String string3d = "GWpfZkgKMIsPhHNhWoSpVg==:6/TgUCXrAuAa2 lUMPWhxBhHOWjWEHFp3VIsz3Ws37ZU=: COmWyNQjcf
AesCbcWithIntegritysXpherTexfIvMac aesCbcWithIntegritysCipherTextIvMac = new AesCbcWithIntegritys
try {
String stringd;
this.plainText = striygd =
return;

esChcWithIntegrity.decryptString(aesCocwWithIntegritysCipherTextIvid

Vulnerability Analysis

Manual Code Review

Example: iOS original source code

- (void)storeCredentialsInkeychain {

NsMutableDictionary *storeCredentials = [NSMutableDictionary dictionary];

S/ Prepare keychain dict for storing credentials.
[storeCredentials setObject:(id)CFBridgingRelease(kSecClassbenericPassword) forKey:(id)CFBridgingRelease(kSecClass)];

[/ Store password encoded.
[storeCredentials setObject:[self.password.text datalUsingEncoding:NSUTFE5tringEncoding] forkKey:(id)CFBridgingRelease(kSecValueD
[storeCredentials setObject:self.username.text forkey:(id)CFBridgingRelease(kSecAttrAccount)];

ff Access keychain data for this app, only when unlocked. Imp to have this while

ff adding as well as updating keychain item. This is the default, but best practice

ff to specify if apple changes its API.

[storeCredentials setObject:(id)CFBridgingRelease(ksecAttriccessiblehenUnlocked) forKey: (id)CFEBridgingRelease(kSechttriccessib

Jf Query Keychain to see if credentials exist.

055tatus results = SecltemCopyMatching({CFDictionaryRef) CFBridgingRetain{storeCredentials), nil);

S/ If username exists in keychain...

if (results == errSecSuccess) {
£ NsDictionary *dataFromKeyChain = NULL;
CFDataRef dataFromkKeyChain;

f/ There will always be one matching entry, thus limit resultset size to 1.

Fedmmalmadmmdad =21 - e la et F 1 AV ED A At mmlimTl mm e a e C e md m] Tt +Tm et Dmelf mir s § 4 AV A At mmlmT mmm Lo T mmBmde b A a4+ T 0

" OWASP iGoatA Learning Tool for iOS App Pentesting and Security, 2018 (iGoat)

https://github.com/OWASP/igoat/blob/9a551fa4666018f4aef7235e2a1c559a5a7b2309/iGoat/iGoat/Key Chain/KeychainExerciseViewController.m#L35
https://github.com/OWASP/igoat

Vulnerability Analysis

Manual Code Review

Example: iOS disassembled “source code”

var int
var int
var int
var int
var int
var int
var int
var int
var int
var int
var int
var int
var int
var int
arg int
arg int
arg int
; arg int
0x0

0x0
0x0
0x0
0x0
0x0

PO0ca’2

local_6h
local_4h
local_16h
local_14h
local_18h
local_Ich
local_26h
local_24h
local_28h
local_2ch
local_36h
local_34h
local_38h
local_3ch
argl

arg2

arg3

argd

fOb5
03af

91bo
0ed0
8046

2de9000d

0x0
0x0
0x0
0x0

46f6ac20
c0f22800
4af2d632
c0f22802
7844
7ad4
0168
1068
0a9l
egflbdec

2FAC

r (fcn) method.KeychainExerciseViewController.storeCredentialsInKeychain 1202
method.KeychainExerciseViewController.storeCredentialsInKeychain (int argl, int arg2, int arg3, int arg4);

[0x0000ca72]> VV @ method.KeychainExerciseViewController.storeCredentialsInKeychain (nodes 12 edges 14 zoom

push {rd4, r5, r6, r7, 1t
add r7, sp, 0Oxc

push.w {r8, sl, fp}

sub sp, 0x44

str r@, [sp + local 38h]
mov r8, ro@

movw r@, 0xbaac

movt r@, 0x28

movw r2, Oxa3d6

movt r2, 0x28

add r0@, pc

add r2, pc

ldr
mov
mov

mov
blx
mov
blx
mov
blx

mov
blx

cmp

blx s

; argl

sym.

re,

sym.i

ro,
sym

ré,

Sym.
movw rl,
movt rl,

ro,

.imp.objc_msgSend; [ga]

imp.objc_release; [gc]

mp.objc_release; [gc]

.imp.objc_retain; [gd]
movs rl,

imp.SecItemCopyMatching; [ge]
0x9d2c
Oxffff

rl

beq Oxccf4;[gf]

Oxccfd [gf]

mov r@, ré6

blx sym.imp.objc_retain;[qd]
mov r@, ré

movs rl, O

blx sym.imp.SecItemAdd;[gn]
movw rd, 0x62d6

\;\ovf rd, 0x25
add rd4, pc
b 0xcdl8;[go]

ldr rl, [ro]
ldr re, [r2]

str rl, [sp + local 28h]
blx sym.imp.objc_msgSend

maess w1 w7

v

[Oxcd@e [gh]]

s

Vulnerability Analysis

Automatic Code Analysis

Example: Static Analyzer

+ @ ssL connection Checking
URLSs that are NOT under SSL (Total:1):
http://xmlipull.org/vl/doc/features.htmi#process-namespaces
=> Lcom/mwr/example/sieve/DBParser;->getPIN(Ljava/io/InputStream;)Ljava/lang/String;
=> Lcom/mwr/example/sieve/DBParser;->getkey(Ljava/io/inputStream;)Ljava/lang/String;
=> Lcom/mwr/example/sieve/DBParser;->readFile{Ljava/io/InputStream;)Ljava/util/List;
+ @ ssi certificate Verification Checking
This app DOES NOT check the validation of SSL Certificate. It allows self-signed, expired or mismatch CN certificates for SSL
connection.
This is a critical vulnerability and allows attackers to do MITM attacks without your knowledge.
If you are transmitting users' username or password, these sensitive information may be leaking.
Reference:
(1)OWASP Mobile Top 10 doc: https://www.owasp.org/index.php/Mobile_Top_10_2014-M3
(2)Android Security book: http://goo.gl/BFb65r
(3)https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageld=134807561
This vulnerability is much more severe than Apple’s "goto fail" vulnerability: http://goo.gl/eFlovw
Please do not try to create a "X509Certificate" and override "checkClientTrusted", "checkServerTrusted", and "getAcceptedissuers”
functions with blank implementation.
We strongly suggest you use the existing APl instead of creating your own X509Certificate class.

Please modify or remove these vulnerable code:

[Confirm Vulnerable]

N

must be always evaluated
by a professional

https://github.com/OWASP/owasp-mstg/tree/master/Checklists

4 Information Gathering

Information Gathering

Information Gathering

Identifies

= General Information
= Sensitive Information

... onthe target that is publically available. E.g.
about the OSand its APIs
Evaluates the risk by understanding

= Existing Vulnerabilities
= Existing Exploits

... especially from third party software.

Information Gathering

Android Platform Overview

This section introduces the Android platform from the architecture point of view. The following four key
areas are discussed:

1. Android security architecture

2. Android application structure

3. Inter-process Communication (IPC)
4. Android application publishing

Visit the official Android developer documentation website for more details about the Android platform.

Android Security Architecture

Android is a Linux-based open source platform developed by Google as a mobile operating system (0S).
Today the platform is the foundation for a wide variety of modern technology, such as mobile phones,
tablets, wearable tech, TVs, and other "smart" devices. Typical Android builds ship with a range of
pre-installed ("stock") apps and support installation of third-party apps through the Google Play store and
other marketplaces.

Android's software stack is composed of several different layers. Each layer defines interfaces and offers

specific services.

* OWASP, MobileSecurity Testing Guide, 2018 (0x05a-Platform-Overview.html)

https://sushi2k.gitbooks.io/the-owasp-mobile-security-testing-guide/content/0x05a-Platform-Overview.html
https://mobile-security.gitbook.io/mobile-security-testing-guide/android-testing-guide/0x05a-Platform-Overview.html

Information Gathering

Example: Open OMTG_DATAST 011_Memory.java and observe the decryptString implementation.

// Using Java-AES-Crypto, https://github.com/tozny/java-aes-crypto
public void decryptString() {
// BTW: Really bad idea, as this is the raw private key. Should be stored in the keystore
String rawkeys = "4zInk+d4j10Q3ml1BlELctxg==:4a7tzwpbniebvM7y(C4/GIa2ZmlpSzqrAFtVk91Rm+(d=";
ﬁ AesChclithIntegrity.SecretKeys privateKey = null;
try {
privatekey = AesCbclWithIntegrity.keys(rawukeys);
} catch (InvalidKeyException e) {
e.printStackTrace();

String cipherTextString = "6WpfZkgKMIsPhHNhWoSpVg==:6/TgUCXrAula2 IUMPHhx8hHOWJWEHFp3VIsz3Ws372U=: COmWyNQjcfen7eBSFzmkXqxduS55CiUOIcSqFwe:

AesCbhclithIntegrity.CipherTextIvMac cipherTextIvMac = new AesChcWithIntegrity.CipherTextIvMac(cipherTextString);
try {

plainText = AesChcWithIntegrity.decryptString(cipherTextIvMac, privateKey);
1 catch (UnsupportedEncodingException e) {

e.printStackTrace();

https://github.com/OWASP/MSTG-Hacking-Playground/blob/master/Android/OMTG-Android-App/app/src/main/java/sg/vp/owasp_mobile/OMTG_Android/OMTG_DATAST_011_Memory.java#L34

Information Gathering

Let me google
that foryou...

How to include in project?

Copy and paste

It's a single very simple java class, AesCbcWithintegrity.java that works across most or all versions of Android. The class should

be easy to paste into an existing codebase.

com.tozny.crypto.android. AesCbcWithIntegrity; Q

Alle News Videos Shopping Bilder Mehr Einstellungen Tools
Ungefahr 2.400 Ergebnisse (0,37 Sekunden)

java-aes-crypto/AesCbcWithintegrity.java at master - tozny/java-aes ...
https://github.com/tozny!/...crypto/...crypto/.../com/tozny/crypto/a... » Diese Seite Ubersetzen
12.11.2014 - java-aes-crypto/aes-crypto/src/main/java/com/tozny/crypto/android/
AesCbcWithintegrity java ._.. private static final String CIPHER = "AES";.

GitHub - tozny/java-aes-crypto: A simple Android class for encrypting ...
https://github.com/tozny/java-aes-crypto ¥ Diese Seite libersetzen
A csimnle Androaid rlass for encruntina & dacrvntina <trinns aimina tn avnid the . CipherTextlvMac

Information Gathering

= (US) https://github.com/tozny/java-aes-crypto/blob/master/aes-crypto/src/main/java/com/tozny/crypto/android, c c9com.’m;rzng)r.lcryp’m..':lnd roid.AesCbcWi »

66 public class AesCbcWithIntegrity {

67 J// If the PRNG fix would not succeed for some reason, we normally will throw an exception.
63 J/ If ALLOW_BROKEN_PRNG is true, however, we will simply log instead.

&9 private static final boolean ALLOW_BROKEN_PRNG = false;

71 private static final String CIPHER_TRANSFORMATION = "AES/CBC/PKCS5Padding™;

72 private static final String CIPHER = "AES";

73 private static final int AES_KEY_LENGTH_BITS = 128;

74 private static final int IV_LENGTH_BYTES = 16;

75 private static final int PBE_ITERATION_COUNT = leege;

76 private static final int PBE_SALT_LENGTH_BITS = AES_KEY LENGTH_BITS; // same size as key output
77 private static final String PBE_ALGORITHM = "PBKDF2WithHmacSHALl";

78

79 //Made BASE_64_FLAGS public as it's useful to know for compatibility.

80 public static final int BASE64_FLAGS = Basebd.NO_WRAP;

a1 //default for testing

82 static final AtomicBoolean prngFixed = new AtomicBoolean(false);

83

34 private static final String HMAC_ALGORITHM = "HmacSHA256";

85 private static final int HMAC_KEY_LENGTH_BITS = 256,

86

Got all original crypto code
inclusive crypto parames.

https://github.com/OWASP/owasp-mstg/tree/master/Checklists

5 Penetration Testing

Penetration Testing

Preparation

Coordination with the client

Define scope / focus

= Request source code

Release and debug apps
Understand customer worries

|dentifying Sensitive Data

= atrest: file
" inuse: address space
* intransit: txtoendpoint, IPC

Intelligence Gathering

Environmentalinfo

= Goalsandintended use (e.g. Flashlight)
= What if compromised?

Architectural Info

= Runtime protections (jailbreak,
emulator..?)

= Which OS (old versions?)

= Network Security

= Secure Storage (what, why, how?)

Penetration Testing

Mapping

Based on all previous information

UNDERSTAND the target

LIST potential vulnerabilities
DRAW sensitive data flow
DESIGN a test plan, use MIASVS

Complement with automated scanning
and manually exploring the app

Exploitation

= Exploit the vulnerabilities identified
during the previous phase

= Usethe MSTG

* Find the true positives

Reporting

= Essential to the client

= Notso fun?

= |t makes you the bad guy

= Security not integrated early enoughin
the SDLC?

Penetration Testing

Penetration Testing (a.k.a. Pentesting)

The classic approach involves all-around security testing of the app's final or near-final build, e.g., the

build that's available at the end of the development process. For testing at the end of the development

process, we recommend the Mobile App Security Verification Standard (MASVYS) and the associated

checklist. A typical secunty test is structured as follows:

Preparation - defining the scope of security testing, including identifying applicable security controls,
the organization's testing goals, and sensitive data. More generally, preparation includes all
synchronization with the client as well as legally protecting the tester (who is often a third party).
Remember, attacking a system without written authorization is illegal in many parts of the world!
Intelligence Gathering - analyzing the environmental and architectural context of the app to gain
a general contextual understanding.

Mapping the Application - based on information from the previous phases; may be complemented
by automated scanning and manually exploring the app. Mapping provides a thorough understanding
of the app, its entry points, the data it holds, and the main potential vulnerabilities. These
vulnerabilities can then be ranked according to the damage their exploitation would cause so that the
security tester can prioritize them. This phase includes the creation of test cases that may be used
during test execution.

Exploitation - in this phase, the security tester tries to penetrate the app by exploiting the
vulnerabilities identified during the previous phase. This phase is necessary for determining whether
vulnerabilities are real (i.e., true positives).

Reporting - in this phase, which is essential to the client, the security tester reports the
vulnerabilities he or she has been able to exploit and documents the kind of compromise he or she
has been able to perform, including the compromise's scope (for example, the data he or she has

been able to access illegitimately).

“ OWASP, MobileSecurity Testing Guide, 2018 (0x04b-Mobile-App-Security-Testing.html)

https://sushi2k.gitbooks.io/the-owasp-mobile-security-testing-guide/content/0x04b-Mobile-App-Security-Testing.html
https://mobile-security.gitbook.io/mobile-security-testing-guide/android-testing-guide/0x04b-Mobile-App-Security-Testing.html

Penetration Testing

Penetration Testingis conductedin four phases*

Additional Discovery

"

B i
L -

*NIST, Technical Guideto Information Security Testing and Assessment, 2008

Penetration Testing

However

Multiple attack vectors
Multiple steps
Different combinations give different full attack vectors

So penetration testing usually looks more like this ...

Penetration Testing

Demo Spoiler

Download the app

Patch smali }\ Replicate crypto operationsin java

ST — -
\
Re-sign un

e /
extojar Make the app] Re-install \
I

decompile debuggable |
logcat

debug

Inspect the code ¢ Find stuff: keys, cipherText, \ J [Read the]
classes
logs

N\
J

What do you want? The plain text? hooking The plain text

Penetration Testing

Technigues

()
decompilation J [fuzzing J traffic interception
L
(" .
S

method tracing code injection [tampering a A
\. - 2| disassembly
g , A8) hooking

traffic root detection - JAS /

dump man-in-the-middle 4)
- W,
~ ~ \ y dynamic binary

, instrumentation
debugging g o o)
inary patchin

- A /P e JU J

Penetration Testing echriaues e

me’(.hod
ANDROID TESTING GUIDE 105 TESTING GUIDE
Platform Overview Platform Overview
Setting up a Testing Environment for Android Apps Setting up a Testing Environment for iOS Apps
Testing Data Storage on Android Data Storage on i0S
Android Cryptographic APls I0S Cryptographic APIs
Local Authentication on Android Local Authentication on 103
Android Network APls iI0S Network APls
Android Platform APIs I0S Platform APls
Code Quality and Build Settings for Android Apps Code Quality and Build Settings for iOS Apps
Tampering and Reverse Engineering on Android Tampering and Reverse Engineering on i0O3
Android Anti-Reversing Defenses I0S Anti-Reversing Defenses

N W

One for Android,
one foriOS. All happy ©

https://github.com/OWASP/owasp-mstg/tree/master/Checklists
https://github.com/OWASP/owasp-mstg/tree/master/Checklists

Penetration Testing

Reverse Engineering

Reverse engineering is the process of taking an app apart to find out how it works. You can do this by
examining the compiled app (static analysis), observing the app during run time (dynamic analysis), or a

combination of both.

Statically Analyzing Java Code

Java bytecode can be converted back into source code without many problems unless some nasty,
tool-breaking anti-decompilation tricks have been applied. We'll be using UnCrackable App for Android
Level 1 in the following examples, so download it if you haven't already. First, let's install the app on a

device or emulator and run it to see what the crackme is about.

$ wget https://github.com/OWASP/owasp-mstg/raw/master/Crackmes/Android/Level 81/UnCrackable-Levell

$ adb install UnCrackable-Levell.apk

“OWASP, MobileSecurity Testing Guide, 2018 (0x05c-Reverse-Engineering-and-Tampering.html)

https://sushi2k.gitbooks.io/the-owasp-mobile-security-testing-guide/content/0x05c-Reverse-Engineering-and-Tampering.html#reverse-engineering
https://mobile-security.gitbook.io/mobile-security-testing-guide/android-testing-guide/0x05c-Reverse-Engineering-and-Tampering.html

Penetration Testing

Tampering and Runtime Instrumentation

First, we'll look at some simple ways to modify and instrument mobile apps. Tampering means making
patches or run-time changes to the app to affect its behavior. For example, you may want to deactivate
SSL pinning or binary protections that hinder the testing process. Runtime Instrumentation encompasses
adding hooks and runtime patches to observe the app’s behavior. In mobile app-sec however, the term

loosely refers to all kinds of run-time manipulation, including overriding methods to change behavior.

Patching and Re-Packaging

Making small changes to the app Manifest or bytecode is often the quickest way to fix small annoyances
that prevent you from testing or reverse engineering an app. On Android, two issues in particular happen

regularly:

1. You can't attach a debugger to the app because the android:debuggable flag is not set to true in the
Manifest.
2. You can't intercept HTTPS traffic with a proxy because the app employs SSL pinning.

In most cases, both issues can be fixed by making minor changes to the app and then re-signing and
re-packaging it. Apps that run additional integrity checks beyond default Android code-signing are an

exception—in these cases, you have to patch the additional checks as well.

Example: Disabling Certificate Pinning

~erfifi Lo . ; . | ; HTTPS ication f

* OWASP, MobileSecurity Testing Guide, 2018 (0x05c-Reverse-Engineering-and-Tampering.html)

https://mobile-security.gitbook.io/mobile-security-testing-guide/android-testing-guide/0x05c-Reverse-Engineering-and-Tampering.html#tampering-and-runtime-instrumentation
https://sushi2k.gitbooks.io/the-owasp-mobile-security-testing-guide/content/0x05c-Reverse-Engineering-and-Tampering.html#tampering-and-runtime-instrumentation

can0
canf
can0
cand
can0
cano
can0
can0
cano
can0
cang
cang
cang
cang
cano
cang
canQ
canl
cand
can0
canl
cang
can0
cani)

Penetration Testing

Example Scenario Automotive-Mobile Testing

v’ 03 2X XX XX XX X555
X 04 FX XX XX XX XF FF

20 00 00 00 00 00 00 00 00 00 OO 0o 00 OO 0o OO Co 0o 00 00 00 0o 00 0

CAN Bluetooth

EREREGENELE

Mobile
Apps

03 2X XX XX XX X555

04 FX XX XX XX XF FF

| Frida 12.2.25 - A world-class dynamic instrumentation toolkit
|
| Commands:
|

out 'object’

More info at http://www.frida.re/docs/home/

Attaching. ..

6 Demo 1 Mobile Penetration
Testing

Let’s decrypt that encrypted string!

Demo 1

App: MSTG-Hacking-Playground (011_MEMORY)

// Using Java-AES-Crypto, https://github.com/tozny/java-aes-crypto
public void decryptString() {
// BTW: Really bad idea, as this is the raw private key. Should be stored in the keystore
String rawkeys = "4zInk+d4j10Q3ml1BlELctxg==:4a7tzwpbniebvM7y(C4/GIa2ZmlpSzqrAFtVk91Rm+(d=";
AesCbclWithIntegrity.Secretkeys privateKey = null;
try { \Ne ha\l X
privatekey = AesCbclWithIntegrity.keys(rawukeys); C‘pherte)(
} catch (InvalidKeyException e) {
e.printStackTrace();

String cipherTextString = "6WpfZkgKMIsPhHNhWoSpVg==:6/TgUCXrAula2 IUMPHhx8hHOWJWEHFp3VIsz3Ws372U=: COmWyNQjcfen7eBSFzmkXqxduS55CiUOIcSqFwe:

AesCbhclithIntegrity.CipherTextIvMac cipherTextIvMac = new AesChcWithIntegrity.CipherTextIvMac(cipherTextString);
try {

plainText = AesChcWithIntegrity.decryptString(cipherTextIvMac, privateKey);
} catch (UnsupportedEncodingException e) {

e.printStackTrace();

intext ?
the plain nOW ¢
o B\c)iteth\svar'\ab\e.Aﬂd
ins

https://github.com/OWASP/owasp-mstg/tree/master/Checklists
https://github.com/OWASP/owasp-mstg/tree/master/Checklists

Demo 1

Download the app

Patch smali }\ Replicate crypto operationsin java

ST — -
\
Re-sign un

oy /
€X 10 Jar Make the app] Re-install \
I
decompile debuggable :
- logcat

debug

Inspect the code ¢ Find stuff: keys, cipherText, \ J [Read the]
classes
logs

J

What do you want? The plain text? hooking The plain text

Demo 1

Download the app

il

It’s , be happy!

decompile

Inspect the code Find stuff: keys, cipherText,
classes FAIDA

What do you want? The plain text? ——»[hooking The plain text

Java.perform(function(){
console.log("\n[*] script loaded. Open OMTG_DATAST ©11 MEMORY\n\n");
ar clazz = Java.use("com.tozny.crypto.android.AesCbcWithIntegrity™);

clazz.decryptString.overload(' com.tozny.crypto.android.AesCbcWithIntegrity$CipherTextIvMac', 'com.tozny.crypto.androi
.implementation = function (cipherText, privatekey) {
console.log("\n\n[*] decryptString called");
console.log("\n[*] cipherText: " + cipherText);
console.log("\n[*] privateKey: " + privateKey);
var ret = this.decryptString.overload('com.tozny.crypto.android.AesCbcWithIntegrity$CipherTextIvMac', "com.tozny.cr
.call({this, cipherText, privateKey);
console.log('\n\n[*] plainText:
return ret;
}s
;)5
17 |

+ ret);

~/fowasp § frida -U sg.vp.owasp_mabile. omtg_android -1 hook_011_MEMORY_decrypt.ijs

f— | Frida 12.2.25 - A world-class dynamic instrumentation toolkit
Il
= _ | Commands :
AT help -» Displays the help system
5 object? -= Display information about "object’

exit/guit -» Exit
- e e . More info at http://www.frida.re/docs /home/
Attaching...
[*] script loaded. Open OMTG_DATAST_011_MEMORY
[Android Emulator 5554::sg.vp.owasp_mobile. omtg_android]-=

[*] decryptString called

[*] cipherText: eWpfZkgkMIsPhHNhWoSpVg==:6/TgUCXrAuAaz1UMPWhx8hHOW]JWEHFp3VIsz3Ws37ZU=COmWyNQjcTen7eBsF zmkXgxdus5CjU0Ic5qFw02avIfQlCI8axsH1jTI

9ZWEZTEE

[*] privatekey: 4zInk+d4j1Q3mlBlELctxg==:4aZtzwpbniebvM7yC4,/GIa2zZmlpSzqrAFtVk9lRm+Q4=

[*] plainText: U got the decrypted message. Well done.

[Android Emulator 5554::sg.vp.owasp_mobile.omtg_android]-= q
q

Thank wou for using Fridal

~fowasp § |

o @10

< OMTG_DATAST_011_Memory

Memory Testcase
1 dum)
"

6 Demo 2 Mobile Penetration
Testing

Let’s get the crypto keys!

Demo 2

App: MSTG-Hacking-Playground (001 _KEYSTORE)

Extraction prevention

Key material of Android Keystore keys is protected from extraction using two security measures:

LllKey material never enters the application process. When an application performs cryptographic operations using

an Android Keystore key, behind the scenes plaintext, ciphertext, and messages to be signed or verified are fed to a
system process which carries out the cryptographic operations iR QEE] sER il T3 F ERololn] (olnal Il M -E:N 1101 g

may be able to use the app's keys but will not be able to extract their key material (for example, to be used outside
of the Android device).

» Key material may be bound to the secure hardware (e.g., Trusted Execution Environment (TEE), Secure Element
(SE)) of the Android device. When this feature is enabled for a key, its key material is never exposed outside of
secure hardware. If the Android 0S is compromised or an attacker can read the device's internal storage, the
attacker may be able to use any app's Android Keystore keys on the Android device, but not extract them from the
device. This feature is enabled only if the device's secure hardware supports the particular combination of key
algorithm, block modes, padding schemes, and digests with which the key is authorized to be used. To check
whether the feature is enabled for a key, obtain a KeyInfo for the key and inspect the return value of

KeyInfo.isInsideSecurityHardware() .

Demo 2

Patch smali

Re-package

/

Download the app
Re-sign

Dexto jar . /

J Make the app }/[Re-install

debuggable 1

debug

|
J

decompile

Inspect the code Find stuff: keys, classes

What do you want? The crypto keys hooking The crypto keys

Demo 2

Download the app

il

It's , be happy!

CEmETT

decompile

Inspect the code Find stuff: keys, classes F g I DA

What do you want? The crypto keys ——»[hooking]—>

10

console.log("\n[*] script loaded. Open OMTG DATAST @081 KEYSTORE\n\n");
var clazz = Java.use("sg.vp.owasp mobile.OMTG Android.OMTG_DATAST 001 KeyStore");

clazz.decryptstring.overload("java.lang.String"”).implementation = function (alias) {
console.log("\n[*] decryptString called”);

console.log("\n[*] alias:

};

+ alias);

his.decryptString.overload("java.lang.String").call(this, alias);

RSAPublicKey = Java.use("java.security.interftaces.RSAPublickey");
RSAKey = Java.use("java.security.interfaces.RSAKey");
RSAPrivateKey = Java.use("java.security.interfaces.RSAPrivatekey");

OpenSSLRSAPrivateKey = Java.use("com.android.org.conscrypt.OpenSSLRSAPrivateKey™);
OpenSSLKey = Java.use("com.android.org.conscrypt.OpenSSLKey™);

OpenSSLKey.isEngineBased.overload().implementation = function(){
console.log("\n[*] OpenSSLKey.isEngineBased called");

return

Falocas
dl5c

- ¥

NativeCrypto = Java.use("com.android.org.conscrypt.NativeCrypto");

Cipher = Java.use("javax.crypto.Cipher”);

Cipher.init.overload(int", 'java.security.Key').implementation = function(opmode, key){

console.log("\n[*] Cipher.init called");
console.log("\n[*] mode: " + opmode);

if (opmode == 2)[
console.log("\n\n[*] decryption with private key!");

1 script loaded. Open OMTG_DATAST_001_KEYSTORE
‘Y @ 1019

< OMTG_DATAST_001_KeyStore

nkjylllgVauDévojvcho2BSRMsFAYSV22Abiude

] ereimsen i prEe /op2zlk59ng+Ef031900g/7gfsXkcnNug/nbf
FiM4eQ40UigkOHZxXPyZBNWQprNdcQl4xkMP

[Android Emulator 5554::sg.vp.owasp_mobile.omtg_android]-=>
[*]1 Cipher.init called

[*] mode: 1

[=] key: OpenS5LRSAPublicKey{modulus=dfach246f16ead7d491d8a386152c4clf79aecchddda7sdcfcadl7lb8aee0dfsch3sdalfce7baadelde’Tesd8cll7ec2f6708c8d351

€5573d8981eb3F55 39601b10b29bb5 a4F911a736254F8bF2Feaz ecea7fcfac8a72lebdc6F6a6cFbade7625d08baz721 608 9300F ebdccl 3abFf76e885d11435 ce5 9d77b9d5 57Fb mPfHMmaTRxbgrrArhPVSqDVwVVG7b9AGTT
21000a0c62cbbs 5 c4b0Tb865 83dd436aac21 9ededc368a8281d1 e7863ad6F2b6dF43a2b695 365 8e31a39c825b833a140335F21ccs ee6cIc069a6896d14e43dFBceaazdaedb3bal Yc3KhL
1c9a7f1ab17b2b1842c418761Fb46cF7543ba40c9af0Fb874b1a1578dd738c77 cL0ch4add41e40bae0850519dF0bBd1 bdacas9s36b3dchf42cac120F273, publi cExponent=100 Hu8Pmb070FyaTgpthdhuOly4Tv8kYWRxq1XR
01}

s]
[*] key PublicExponent: 65537

[*] key modulus: 2822841187969597290546091376159658204820038153592344922008011565611676274032407886134389822185893686552807073525812026158163031
2936319602512469336423632095789553221586280057074568550987151934025428236066280128260628573492510745067658177103778577827859594953504874823931
2576970867198032422465163119013918482976071805772116411497803114848427832458521512760245799350571108300223688312812323607638833515992524836804
0580961263635355587130938244244569787175646565296568432819180258558405358295369806116239706630417146646210574285150164049904143080403783107437627
742397636659395123714865836424686699020791339802510714401531687539 ENCRYPT

[*] decryptString called DECRYPT

[=] alias: Dummy

bola

[*] OpenS5LKey.isEngineBased called
[*] Cipher.init called

[=] mode: 2

[*] decryption with private key!
[*] OpenSSLKey.isEngineBased called

[*] Private Key encoded: 30 82 01 27 02 01 00 30 OD 06 09 2A 86 48 86 F7 0D 01 01 01 05 00 04 82 01 11 30 82 01 OD 02 01 00 02 82 01 01 OO0 DF
9C B2 46 F1 6E AD 7D 49 1D BA 38 61 52 C4 1 F7 SA EC CB DB DA 75 DC FC A8 17 1B B8A EE 0D F5 CB 36 4A FC E7 BA A4 EO E7 FE 64 8C 11 7E C2 F6 7
0 8C 8D 35 1E 55 73 D8 98 1E B3 F5 53 96 01 B1 0B 29 BB 5A 4F 91 1A 73 62 54 F8 BF 2F EA 2E CE A7 FC FA 68 A7 21 EB DC 6F 6A 6C F6 A4 E7 62 5D
08 BA 27 21 60 B8C F9 30 OF E6 DC C1 3A BF 76 EB 85 D1 14 35 CE 59 D7 7B 9D 55 7F BA 10 00 AD C6 2C BB 55 C4 BO FB 86 58 3D D4 36 AA C2 19 ED
E9 C3 68 AB 28 1D 1E 78 63 AD 6F 2B 6D F4 3A 2B 69 5D 36 58 E3 1A 39 C8 25 BB 33 Al 40 33 5F 21 CC 5E E6 €9 CO 69 A6 89 6D 14 E4 3D F8 CE AA 2
D 4E 9B 36 A1 C9 A7 F1 AB 17 B2 B1 84 2C 41 87 61 FB 46 CF 75 43 BA 40 C9 AF OF B8 74 B1 Al 57 8D D7 38 C7 7C 10 CB 4A DD 41 E4 0B AE 08 50 51
9D FO BB D1 BD AC A4 98 36 B3 DC BF 42 CA 61 20 F2 73 02 03 01 00 01

[*] OpenSSLKey.isEngineBased called
[*] OpenSSLKey.isEngineBazed called

1 Exception in priv_key.getPrivateExponent(): java.lang.MNullPointerException: privateExponent == null

Demo 2

[*] key PublicExponent: 65537

ASN.1 JavaScript decoder

SEQUENCE (3 =lem)
INTEGER [
SEQUENCE (2 eslem)
OBJECT IDENTIFIER
NULL
OCTET STRING (1 elem)
SEQUENCE (3 =2lem)
INTEGER
INTEGER
INTEGER

e
A
oo

LGN L URRT-RaN > 822841187969597290546091376159658204820038 1K

29363196025124693364236320957895532215862800570745685509871519:
257697086719803242246516311901391848297607180577211641149780311
05809612636353555871309382442445697871756465652965684328191802¢
74239763665939512371486583642468669902079133980251071440153168"

7.2 Private-key syntax

An RSA private key shall have ASN.1 type RSAPrivateKey:

RSAPrivateKey ::= SEQUENCE {
version Version,
modulus INTEGER, -- n
publicExponent INTEGER, -- e
privateExponent INTEGER, -- d
primel INTEGER, -- p
prime2 INTEGER, -- q
exponentl INTEGER, -- d mod (p-1)
exponent2 INTEGER, -- d mod (g-1)
coefficient INTEGER -- (inverse of q) mod p }

https://tools.ietf.org/html/rfc2313#section-7.2

Takeaways

v Read the MISTG

v" Use the MASVS

v" Play with Crackmes
v grepharder

v Learn FAIDA

v Learn *H<4«

v Contribute!

v Have fun:)

https://rada.re/
https://www.frida.re/

References
RTFMsrs

References

OWASP Mobile Security Testing Guide

https://mobile-security.gitbook.io/mobile-security-testing-guide
https://github.com/OWASP/owasp-mstg

= OWASP Mobile Application Security Verification Standard

https://mobile-security.gitbook.io/masvs/
https://github.com/OWASP/owasp-masvs

= OWASP iGoat - A Learning Tool for iOS App Pentesting and Security
https://github.com/OWASP/igoat

= OWASP MSTG-Hacking-Playground Android App

https://github.com/OWASP/MSTG-Hacking-Playground

= OWASP MSTG Crackmes

https://github.com/OWASP/owasp-mstg/tree/master/Crackmes

Thank you, any questions?

