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When considering changes to legacy features or
behavior...

... the benefit of the proposed change should be weighed
against the likely cost of breaking content [...]

In some cases, it may be desirable to make a nonstandard
feature or behavior part of the conforming language, if it
satisfies a valid use case.



XMLHttpRequest



The real world
does not reflect
best practices



xsleaks

https://xsleaks.dev




popups

[eee]

[ example.com

cyan = window.open(sameOrigin);
// [object Window]

popup

Same-Origin:
Full DOM access

opener
// [object Window]

Browsing Context Group




Cross-origin popups
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[ example.com ]

L] popup

Cross-Origin:

opener.length;
// frames are leaking

Browsing Context Group

yellow = window.open(yellowOrigin)
// [object Window]

// the frames are leaking
yellow.length;

vellow[0]; // first frame




Paper “Finding All Cross-Site Needles in the DOM Stack”

"20 of [the Tranco
Top 50 websites]
were vulnerable to
login detection”
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ABSTRACT

Cross-Site Leaks (XS-Leaks) are a class of vulnerabilities that allow a
web attacker to infer user state from a target web application cross-
origin. Fixing XS-Leaks is a cat-and-mouse game: once a published
vulnerability is fixed, a variant is discovered. To end this game, we
propose a methodology to find all leak techniques for a given state-
dependent resource and a set of inclusion method. We translate
a website’s DOM at runtime into a directed graph. We execute
this translation twice, once for each state. The outputs are two
slightly different graphs. We then get the set of all leak techniques
by computing these two graphs’ differences. The remaining nodes
and edges differ between the two states, and the corresponding
DOM properties and objects can be observed cross-origin.

‘We implemented AUTOLEAK, our open-source solution for au-
tomatically detecting known and yet unknown XS-Leaks in web
browsers and websites. For our systematic study, we focus on XS-
Leak test cases for web browsers with detectable differences induced
by HTTP headers. We created and evaluated a total of 151 776 test
cases in Chrome, Firefox, and Safari. AUTOLEAK executed them
automatically without human interaction and identified up to 8 403
leak techniques per test case. On top, AUTOLEAK’s systematic evalu-
ation uncovers 5 novel classes of XS-Leaks based on leak techniques
that allow detecting novel HTTP headers cross-origin. We show
the applicability of our methodology on 24 web sites in the Tranco
Top 50 and uncovered XS-Leaks in 20 of them.
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Paper “XSinator.com: From a Formal Model to the Automatic
Evaluation of Cross-Site Leaks in Web Browsers”
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Removing bad APIs: in a complex code base

1.  Write a new, improved function
2. Disallow new code to use old function
3. Switch all existing code to the new API

4. Remove the bad API.
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Removing bad APIs from the web

Provide a better
You are

here

Discourage & wa 2loper tools
Allow websites to opt-out of existing behavior
Advocacy? Site Outreach? Wait?

Maybe never actually remove the bad thing? :-(
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There's
hope



Cross-Origin Opener Policy
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[ example.com

cyan = window.open(sameOrigin);
// [object Window]

(L] popup

Same-Origin:

opener
// [object Window]

Browsing Context Group
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Cross-Origin Opener Policy

L] popup

Cross-Origin:
NoO access

opener // null

s

[eee]

[ example.com

cyan = window.open(sameOrigin);
// [object Window]

yellow = window.open(yellowOrigin)
// null

L] popup

Same-Origin:
Full DOM access

opener
// [object Window]

Browsing Context Group

Browsing Context Group
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Cross-Origin Opener Policy

L] popup

Cross-Origin:
NoO access

opener
// null

s

[eee]

[ example.com

yellow = window.open(yellowOrigin)
// null

cyan = window.open(sameOrigin);
// [object Window]

L] popup

Same-Origin:

opener
// [object Window]

Browsing Context Group

Browsing Context Group
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other leaks

example.com

(oo e}

[ attacker.example

@®®

—> Counting frames
—> Timing attacks

—® Login Detection
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Cross-0Origin-Resource-Policy: same-site

(oo e}

example.com (attacker.example

. OLO
b X — Request failed.

x —> Request failed.

x —> Request failed.
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Fetch
Metadata
Request
Headers




HTTP GET in curl

GET / HTTP/2
Host: example.com
User-Agent: curl/8.7.1

Accept: /%
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HTTP GET in the browser

GET / HTTP/2

Host: example.com
User-Agent:

Accept: Accept-Language, Accept-Encoding: ..
Upgrade-Insecure-Requests: 1
Sec-Fetch-Dest: document
Sec-Fetch-Mode: navigate
Sec-Fetch-Site: none
Sec-Fetch-User: ?1

Priority: u=0, i

Pragma: no-cache

Cache-Control: no-cache

e 21



HTTP GET in the browser (redacted)

GET / HTTP/2

Host: example.com

Sec-Fetch-Dest:
Sec-Fetch-Mode:
Sec-Fetch-Site:

Sec-Fetch-User:

document
navigate
none

?1
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Fetch Metadata

Sec-Fetch-Dest:

e <audio>, <img>, <script>, <style>, ..

e document, <iframe>, <embed>, <object>, ..
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Fetch Metadata

Sec-Fetch-Mode:
e navigate

® (COrs, no-cors
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Fetch Metadata

Sec-Fetch-Site:
e (Cross-site, same-site, same-origin

e None (= user initiated)
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Fetch Metadata

assets. example .com

s
[as]

(000
[ example.com
—> <script>
—> <img>
—> <iframe> and popup
&
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Fetch Metadata

assets. example .com

s
[as]

(000
[ attacker.example
X <script>
< —> <img>
x <iframe>
\_
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Build your own
protections



DEMO

https://noframes.on.web.security.plumbing/






Thank you

Frederik Braun

@ @freddy@security.plumbing

e freddy@mozilla.com




Frederik Braun

@ @freddy@security.plumbing

e freddy@mozilla.com




More

https://xsleaks.dev

Cross-0Origin-Opener-Policy on MDN

Cross-0rigin Resource Policy (CORP) on MDN

Cross-0Origin-Embedder-Policy on MDN

Security headers quick reference on web.dev

Fetch metadata request header on MDN

Protect vour resources from web attacks with Fetch Metadata on web.dev

Fetch Metadata Request Headers playground
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https://xsleaks.dev
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Cross-Origin-Opener-Policy
https://developer.mozilla.org/en-US/docs/Web/HTTP/Cross-Origin_Resource_Policy
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Cross-Origin-Embedder-Policy
https://web.dev/articles/security-headers
https://developer.mozilla.org/en-US/docs/Glossary/Fetch_metadata_request_header
https://web.dev/articles/fetch-metadata
https://secmetadata.appspot.com/xss?value=your_value_here

| would be wrong if | said that there were no meaningful deprecations

Total Cookie Protection

SameSite Cookies

State Partitioning

Opague Response Blocking (ORB)

...and many more

34


https://blog.mozilla.org/en/products/firefox/firefox-rolls-out-total-cookie-protection-by-default-to-all-users-worldwide/
https://web.dev/articles/samesite-cookie-recipes
https://developer.mozilla.org/en-US/docs/Web/Privacy/State_Partitioning
https://github.com/annevk/orb

