?'s Firefox

Dealing with
Cross-Site Attacks

German OWASP Day 2024

W3C

HTML Design Principles
W3C Working Draft

E
(@)
5
S
2
2

When considering changes to legacy features or
behavior...

... the benefit of the proposed change should be weighed
against the likely cost of breaking content [...]

In some cases, it may be desirable to make a nonstandard
feature or behavior part of the conforming language, if it
satisfies a valid use case.

XMLHttpRequest

The real world
does not reflect
best practices

xsleaks

https://xsleaks.dev

popups

[eee]

[example.com

cyan = window.open(sameOrigin);
// [object Window]

popup

Same-Origin:
Full DOM access

opener
// [object Window]

Browsing Context Group

Cross-origin popups

~

oco0o X
[example.com]

L] popup

Cross-Origin:

opener.length;
// frames are leaking

Browsing Context Group

yellow = window.open(yellowOrigin)
// [object Window]

// the frames are leaking
yellow.length;

vellow[0]; // first frame

Paper “Finding All Cross-Site Needles in the DOM Stack”

"20 of [the Tranco
Top 50 websites]
were vulnerable to
login detection”

Finding All Cross-Site Needles in the DOM Stack:
A Comprehensive Methodology for the Automatic XS-Leak
Detection in Web Browsers

Dominik Trevor Nof§ Lukas Knittel
Ruhr University Bochum
lukas.knittel@rub.de

Ruhr University Bochum
dominik.noss@rub.de

Marcus Niemietz
Niederrhein University of Applied
Sciences
marcus.niemietz@hs-niederrhein.de

ABSTRACT

Cross-Site Leaks (XS-Leaks) are a class of vulnerabilities that allow a
web attacker to infer user state from a target web application cross-
origin. Fixing XS-Leaks is a cat-and-mouse game: once a published
vulnerability is fixed, a variant is discovered. To end this game, we
propose a methodology to find all leak techniques for a given state-
dependent resource and a set of inclusion method. We translate
a website’s DOM at runtime into a directed graph. We execute
this translation twice, once for each state. The outputs are two
slightly different graphs. We then get the set of all leak techniques
by computing these two graphs’ differences. The remaining nodes
and edges differ between the two states, and the corresponding
DOM properties and objects can be observed cross-origin.

‘We implemented AUTOLEAK, our open-source solution for au-
tomatically detecting known and yet unknown XS-Leaks in web
browsers and websites. For our systematic study, we focus on XS-
Leak test cases for web browsers with detectable differences induced
by HTTP headers. We created and evaluated a total of 151 776 test
cases in Chrome, Firefox, and Safari. AUTOLEAK executed them
automatically without human interaction and identified up to 8 403
leak techniques per test case. On top, AUTOLEAK’s systematic evalu-
ation uncovers 5 novel classes of XS-Leaks based on leak techniques
that allow detecting novel HTTP headers cross-origin. We show
the applicability of our methodology on 24 web sites in the Tranco
Top 50 and uncovered XS-Leaks in 20 of them.

Christian Mainka
Ruhr University Bochum
christian.mainka@rub.de

Jorg Schwenk
Ruhr University Bochum
joerg.schwenk@rub.de

ACM Reference Format:

Dominik Trevor NoB, Lukas Knittel, Christian Mainka, Marcus Niemietz,
and Jorg Schwenk. 2023. Finding All Cross-Site Needles in the DOM Stack: A
Co hensive Methodology for the ic XS-Leak Detection in Web
Browsers. In Proceedings of the 2023 ACM SIGSAC Conference on Computer
and Communications Security (CCS *23), November 2630, 2023, Copenhagen,
Denmark. ACM, New York, NY, USA, 15 pages. https://doi.org/10.1145/
3576915.3616598

1 INTRODUCTION

Paper “XSinator.com: From a Formal Model to the Automatic
Evaluation of Cross-Site Leaks in Web Browsers”

® Chrome

XS-Leak
0s

@ Edge

© Firefox

QO Opera

@ safari

Detectable Difference: Status Code
Performance API Error
Style Reload Error
Request Merging Error
Event Handler Error
MediaError

000003 |# 850

Detectable Difference: Redirect
CORS Error Leak
Redirect Start
Duration Redirect
Fetch Redirect
URL Max Length
Max Redirect
History Length
CSP Violation
CSP Redirect

000000000

@000 (0ee@@O ({] %0

3
=)
°
°
°
o
°
°
o
)
°

Detectable Difference: API Usa
‘WebSocket
Payment AP

)

e

00 (000000000 (00000 ({] 390

oe

Detectable Difference: Page Content
Performance API Empty Page
Performance XSS Auditor
Cache

Frame Count

Media Dimensions

Media Duration

1d Attribute

CSS Property

00000000

Detectable Difference: Header
SRI Error

Performance API Download
Performance API CORP
COOP Leak

Performance API XFO

CSP Directive

CORP

CORB

ContentDocument XFO
Download Detection

0000000000 (00000000 (OO |000000000 (0000 [{Js870

8[0000000000 (00000000 OO (000000000 00000 & 30

50000000000 000000007

N/0000000000

' i 2 Attackable (max. 34)

20000000000 00000000 (OO0 (000000000 (0000 O® |# 4634
8[0000000000 (00000000 (OO (000000000 00000 (& 437

Z@000000000 (00000000 |00 (000000000 |0O@00O0 |# 8114
80000000000 00000000 OO (000000000 00000 & 330
20000000000 00000000 (OO0 (000000000 (00000 (# 01

73

50000000000 (00000000 (00 (000000000 (00000 |{] 7503
20000000000 00000000 OO (000000000 (00000 & 302

20000000000 00000000 OO (000000000 00000 (& 110

20000000000 00000000 OO (00

Leaking

HTTP Status Code

HTTP Response Headers
Amount of Redirects
Length of a URL

Cache Status

Image Dimensions

Video Duration

(000

[attacker.example

media

@®®

popup

</>

1frame

Removing bad APIs: in a complex code base

1. Write a new, improved function
2. Disallow new code to use old function
3. Switch all existing code to the new API

4. Remove the bad API.

11

Removing bad APIs from the web

Provide a better
You are

here

Discourage & wa 2loper tools
Allow websites to opt-out of existing behavior
Advocacy? Site Outreach? Wait?

Maybe never actually remove the bad thing? :-(

12

There's
hope

Cross-Origin Opener Policy

(000

[example.com

cyan = window.open(sameOrigin);
// [object Window]

(L] popup

Same-Origin:

opener
// [object Window]

Browsing Context Group

14

Cross-Origin Opener Policy

L] popup

Cross-Origin:
NoO access

opener // null

s

[eee]

[example.com

cyan = window.open(sameOrigin);
// [object Window]

yellow = window.open(yellowOrigin)
// null

L] popup

Same-Origin:
Full DOM access

opener
// [object Window]

Browsing Context Group

Browsing Context Group

15

Cross-Origin Opener Policy

L] popup

Cross-Origin:
NoO access

opener
// null

s

[eee]

[example.com

yellow = window.open(yellowOrigin)
// null

cyan = window.open(sameOrigin);
// [object Window]

L] popup

Same-Origin:

opener
// [object Window]

Browsing Context Group

Browsing Context Group

16

other leaks

example.com

(oo e}

[attacker.example

@®®

—> Counting frames
—> Timing attacks

—® Login Detection

17

Cross-0Origin-Resource-Policy: same-site

(oo e}

example.com (attacker.example

. OLO
b X — Request failed.

x —> Request failed.

x —> Request failed.

18

Fetch
Metadata
Request
Headers

HTTP GET in curl

GET / HTTP/2
Host: example.com
User-Agent: curl/8.7.1

Accept: /%

20

HTTP GET in the browser

GET / HTTP/2

Host: example.com
User-Agent:

Accept: Accept-Language, Accept-Encoding: ..
Upgrade-Insecure-Requests: 1
Sec-Fetch-Dest: document
Sec-Fetch-Mode: navigate
Sec-Fetch-Site: none
Sec-Fetch-User: ?1

Priority: u=0, i

Pragma: no-cache

Cache-Control: no-cache

e 21

HTTP GET in the browser (redacted)

GET / HTTP/2

Host: example.com

Sec-Fetch-Dest:
Sec-Fetch-Mode:
Sec-Fetch-Site:

Sec-Fetch-User:

document
navigate
none

?1

22

Fetch Metadata

Sec-Fetch-Dest:

e <audio>, , <script>, <style>, ..

e document, <iframe>, <embed>, <object>, ..

23

Fetch Metadata

Sec-Fetch-Mode:
e navigate

® (COrs, no-cors

24

Fetch Metadata

Sec-Fetch-Site:
e (Cross-site, same-site, same-origin

e None (= user initiated)

25

Fetch Metadata

assets. example .com

s
[as]

(000
[example.com
—> <script>
—>
—> <iframe> and popup
&

26

Fetch Metadata

assets. example .com

s
[as]

(000
[attacker.example
X <script>
< —>
x <iframe>
_

27

Build your own
protections

DEMO

https://noframes.on.web.security.plumbing/

Thank you

Frederik Braun

@ @freddy@security.plumbing

e freddy@mozilla.com

Frederik Braun

@ @freddy@security.plumbing

e freddy@mozilla.com

More

https://xsleaks.dev

Cross-0Origin-Opener-Policy on MDN

Cross-0rigin Resource Policy (CORP) on MDN

Cross-0Origin-Embedder-Policy on MDN

Security headers quick reference on web.dev

Fetch metadata request header on MDN

Protect vour resources from web attacks with Fetch Metadata on web.dev

Fetch Metadata Request Headers playground

33

https://xsleaks.dev
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Cross-Origin-Opener-Policy
https://developer.mozilla.org/en-US/docs/Web/HTTP/Cross-Origin_Resource_Policy
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Cross-Origin-Embedder-Policy
https://web.dev/articles/security-headers
https://developer.mozilla.org/en-US/docs/Glossary/Fetch_metadata_request_header
https://web.dev/articles/fetch-metadata
https://secmetadata.appspot.com/xss?value=your_value_here

| would be wrong if | said that there were no meaningful deprecations

Total Cookie Protection

SameSite Cookies

State Partitioning

Opague Response Blocking (ORB)

...and many more

34

https://blog.mozilla.org/en/products/firefox/firefox-rolls-out-total-cookie-protection-by-default-to-all-users-worldwide/
https://web.dev/articles/samesite-cookie-recipes
https://developer.mozilla.org/en-US/docs/Web/Privacy/State_Partitioning
https://github.com/annevk/orb

