How (Not) to Use OAuth

in 2024

Daniel Fett

About me: Daniel Fett

e Coauthor of the OAuth Security Best Current Practice RFC
e Standardization activities: IETF OAuth, OpenlD Foundation

e PhD on web protocol security (formal security analysis)
e Product owner in the German EUDI Wallet project @ SPRIN-D

In this Talk

What is OAuth 2.0? Quick recap!

Security Challenges for OAuth

The three most important recommendations in the Security BCP

... and why you don’t have to remember them

Who is familiar with O@th?

OAuth is a standard
for federated authorization

Authorization

‘ ! authorizes

User
Authentication

i I authenticates to

User

A Online
Banking
Account

Authorization Server
& Resource Server

BRI to access
App

Client

’
using identity from
airbnb

Relying Party |dentity Provider

Authorization

‘ ! authorizes

A Online
Banking
Account

to access

Banking
App

User Client Authorization Server
& Resource Server
Authentication
) & -
authenticates to using identity from '
airbnb
User Relying Party |dentity Provider

OAuth & friends in the Wild

O ~09r

Qv ~fr

& https:/www.facebook.com

Facebook - Google Chrome

3 Facebook

Melde dich an, um dein Facebook-Konto mit TripAdvisor zu verwenden.

E-Mail-Adresse
oder
Handynummer.
Passwort
Immer bei TripAdvisor angemeldet bleiben

Konto vergessen?

Neues Konto erstellen

Facebook

sign-in-with-apple-example/index.php at master - aaronpk/sign-in-with-apple-example - GitHub - Google Chrome

sign-in-with-apple-example/i X +

< C @ GitHub, Inc. [US] | https://github.com

DSOS G308 ctos://app Leid. app e .con/auth/ tokengil
'grant_type' 'authorization_code',
'code' => $_GET['code'],
'redirect_uri' => $redirect_uri,
‘client_id' => $client_id,
'client_secret' => $client_secret,
1);

ifl(liceat(®racnnnca-sarrace taken)) [

Qv 92
@ INGLogin Xl +

ING Login - Google Chrome

C (@ ING-DiBaAG [DE] | https://access.ing.de. b g

Inkognito €

Log-in

Banking

Qv g

@ sign in- Google Accounts ol +

Sign in - Google Accounts - Google Chrome

€ 5 C @& htpsaccoun

¥r Inkognito @ i

G Sign inwith Google

Google OAuth 2.0 Playground
wants to access your Google
Account

@ rettaeniciegoogiemaiicom
This will allow Google OAuth 2.0 Playground to:

View and edit events on all your calendars ®

Make sure you trust Google OAuth 2.0
Playground

Inkognito(2) @) :

You may be sharing sensitive info with this site or app.
Learn about how Google OAuth 2.0 Playground will handle
your data by reviewing its terms of service and privacy
policies. You can always see or remove access in your
Google Account.

Learn about the risks

Cancel Allow

English (United States) ~ Help Prvacy Tems

Apple

Google

e-health

e-SiIgning

open consumer data

open mourance

OAuth 2.0!

open finance

digital identity ecosycteme

open éankihg

Rople Google

e-government

Implicit Grant

It

Banking
App A Bank

POST /connect Client AS/RS
Redirect to Authorization Server
Authorizati : : : : (
’ (F);(Iezqau:; GET /authorize?redirect_uri=client.example/return&.. ﬁ
User authenticates; authorizes access Give access
Authorization _ . to bank
Response Redirect to client.example/return#access_token=bar42&.. account?

Holy Grail /

Implicit Grant

Banking
ﬂ@ App ﬁ Bank

Client AS/RS

User POST /connect

Redirect to Authorization Server

Authorization

Request GET /authorize?redirect_uri=client.example/return&.. ﬁ
User authenticates; authorizes access Give access
Authorization _ . to bank
Response Redirect to client.example/return#access_token=bar42&.. account?

Use access_token (JS Browser Apps)

or<<__

Send access_token

Use access_token

Authorization Code Grant

It

Banking
App A Bank

POST /connect Client AS/RS
Redirect to Authorization Server
Authorizati . : . . (
’ gz;gg GET /authorize?redirect_uri=client.example/return&.. jiii
User authenticates; authorizes access Give access
Authorization _ _ to bank
Response Redirect to client.example/return?code=fo042&... account?

GET ..?code=f0042%&..

POST /token, code=fo0042

Send access_token
HO/y Gl’ai// Use access_token

in Backend only

Twelve Years after RFC6749:
Security Challenges for OAuth

Challenge 1: Implementation Flaws

e We still see many implementation flaws
e Known anti-patterns are still used

o Insufficient redirect URI checking (code/token is redirected to attacker)
o state parameter is not used properly to defend against CSRF

o

e Clients worse than authorization/resource servers

° [Li et al., 2014] e [Chen etal., 2014]
60 chinese clients, more than half vulnerable to 89 of 149 mobile clients vulnerable to one or more
CSRF attacks

e [Yangetal., 2016] e [Wangetal., 2013]
Out of 405 clients, 55% do not handle state (CSRF Vulnerabilities in Facebook PHP SDK and other
protection) correctly OAuth SDKs

e [Shebab et al., 2015] e [Sunetal, 2012]
25% of OAuth clients in Alexa Top 10000 vulnerable 96 Clients, almost all vulnerable to one or more

to CSRF attacks

Challenge 2: High-Stakes Environments

New Use Cases require a very high level of security

e Open Banking: Account access, payments, wire transfers
e eHealth: Access to health data

e eSigning: Legally binding digital signatures

e Wallets (EU Digital Identity Wallets, eIDAS 2.0):

Identification on Level of Assurance High -> Kristina's talk

Far beyond the scope of the original security threat model!

Challenge 3: Dynamic and Complex Setups

Originally anticipated:

One trustworthy OAuth provider,
statically configured per client

Resource Server Authorization Server

OAuth Provider

Challenge 3: Dynamic and Complex Setups

Today:

-

Authorization Server A

Resource Server !

OAuth Provider A

Multiple AS/RS per client

-

-

-

-

Authorization Server

Resource Server

OAuth Provider B

~N

Re

\

.-

source Server’ ¢<

OAuth Provider C

Authorization Servvr“,

Not all entities
are trustworthy!

Challenge 3: Dynamic and Complex Setups

Today:

-

-

Authorization Server

Resource Server

OAuth Provider A

L

Multiple AS/RS per client

Dynamic relationships\ \

Authorization Server

— Resource Server

OAuth Provider B

-

\

Resource Server’ ¢<

.-

OAuth Provider C

Authorization Servvr“,

Not all entities
are trustworthy!

How to address these
challenges?

OAuth 2.0 Security Best Current Practice RFC

e Under development at the IETF
e Refined and enhanced security guidance for OAuth 2.0 implementers
e Complements existing security guidance in RFCs 6749, 6750, and 6819

irnemor ot

= | e Updated, more comprehensive Threat Model
e | @ DESCription of Attacks and Mitigations
e Simple and actionable recommendations

Input from practice and formal analysis

nnnnnnnnnnnnnn

1 ET F

The Three Most Important

Recommendations
in the OAuth Security BCP

@ Do not use the OAuth Implicit Grant any longer!

ﬂ User ' Client ‘AS/RS

Threat: Access token
leakage from web

application (XSS, browser GET /authorize?..
history, proxies, operating

systems, ...) User authenticates & consents Threat: Access token replay!

\uthorization Server

A ﬁedirect to rp.com/authok#access_token=f0023&..

* Access token available in web application

Use access_token (Sing

Threat: Access token injection! '
Send access_token (Non-SPA)

Use access_token

The Implicit Grant ...

Why is Implicit even in RFC67497?

No Cross-Origin Resource Sharing in 2012!
= No way of (easily) using OAuth in SPAs.

= Not needed in 2024!

sends powerful and potentially long-lived tokens through the browser,
lacks features for sender-constraining access tokens,

provides no protection against access token replay and injection, and
provides no defense in depth against XSS, URL leaks, etc.!

Recommendation

“Clients SHOULD NOT use the implicit grant [...]"

“Clients SHOULD instead use the response type code
(aka authorization code grant type) [...]"

Use the Auth Code Grant with PKCE & DPoP/mTLS!

- Code only useful with code_verifier

ﬂ Mitigation: Proof Key for Code Exchange (PKCE)
User - Code replay/injection prevented by PKCE. S

Redirect to Authorization Server

GET /authorize?code_challenge=sha256xyz&. ..

Redirect to rp.com/authok?code=bar42&. ..

Send code

code=bar42

Mitigation: Single-use Code

POST /token,

Double use leads to access token invalidation!

Send access_token
Mitigation: Sender-Constrained Access Token

Via mutual TLS or DPoP. Use access_token

Authorization Code Grant with PKCE & DPoP/mTLS ...

protects against code and token replay and injection,
supports sender-constraining of access tokens,
protects against CSRF better than state does,
provides defense in depth!

Recommendation

“Clients utilizing the authorization grant type MUST use PKCE [...]"

“Authorization servers SHOULD use TLS-based methods for sender-constrained access tokens [...]”

(2 Stop Redirects Gone Wild!

e Enforce exact redirect URI matching

o Simpler to implement on AS side

o Adds protection layer against open redirection
e Clients MUST avoid open redirectors!

o Use whitelisting of target URLs
o or authenticate redirection request

@ Limit Privileges of Access Tokens!

e Sender-constraining (MTLS or DPoP)
e Receiver-constraining (only valid for certain RS)
e Reduce scope and lifetime and use refresh tokens - defense in depth!

But wait, there’s more...

The treasure trove: Section 2 of draft-ietf-oauth-security-topics!

2.1.

An "open redirector” is an endpoint on a web server that forwards a
user’s browser to an arbitrary URI obtained from a query parameter.

Best Practices

This section describes the core set of security mechanisms and
measures that are considered to be best practices at the time of
writing. Details about these security mechanisms and measures
(including detailed attack descriptions) and requirements for less
commonly used options are provided in Section 4.

Protecting Redirect-Based Flows

When comparing client redirect URIs against pre-registered URIs,
authorization servers MUST utilize exact string matching except for
port numbers in localhost redirection URIs of native apps (see
Section 4.1.3). This measure contributes to the prevention of leakage
of authorization codes and access tokens (see Section 4.1). It can
also help to detect mix-up attacks (see Section 4.4).

Clients and authorization servers MUST NOT expose URLs that forward
the user's browser to arbitrary URIs obtained from a query parameter
(open redirectors) as described in Section 4.11. Open redirectors can
enable exfiltration of authorization codes and access tokens.

Datatracker

draft-ietf-oauth-security-topics-29
Active Internet-Draft (oauth WG)

@ Info i= Cq

Document type
Active Internet-Draft (oauth WG)

Select version
00 01 02 03 04 05 06 07 (Q

17 (18 | 19| 20 | 21 | 22 | 23| 24 | 2

Compare versions

draft-ietf-oauth-security-topics-28

draft-ietf-oauth-security-topics-29

Side-by-side

Authors

I’'m confused...

Should | Even Use OAuth?

Absolutely!

e Standards are good

o Battle-proven libraries
o Interoperability

Years of experience, dozens of security analyses

Custom-built solutions prone to repeat even the most basic vulnerabilities
Protection against strong attackers

Formal proof of security

But:

o Know your threat model
o Read the security advice, including the BCP draft
o Implement the latest security features

} ... or use OAuth 2.1 / FAPI 2.0

What you need
in Open Banking
and elsewhere...

Conformance
Tests

OpenlD FAPI 2.0

Interop. + Security
Profile of OAuth 2.0

Interoperability Authentication

OAuth 2.1

= OAuth 2.0
+ Security BCP

Security/
Hardening

Authorization

FAPI?

Financial API

FAPI?

= AP
Financial API Security Profile

FAPI?
= o AP
= AP S =

Financial-grade API Security Profile

FAPI?

FAPI

FAPI!

Security, interoperability, and feature profile for OAuth 2.0
Implements all the security recommendations from the OAuth Security BCP
Usable for all APls, including high-security applications.

FAPI 2.0: Latest version

danielfett.de/publications
List of Drafts/Specifications

Follow up

oauth.secworkshop.events

OAuth Security Workshop,
February 26-28, 2025,
Reykjavik

https://danielfett.de/publications/
https://oauth.secworkshop.events/osw2025

danielfett.de/publications oauth.secworkshop.events

List of Drafts/Specifications, OAuth Security Workshop,
Talk on FAPI 2.0 February 26-28, 2025, Reykjavik

Daniel Fett
SPRIN-D

mail@danielfett.de Th a n k yO U '

https://danielfett.de/publications/
https://oauth.secworkshop.events/osw2025

